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Abstract: Drug discovery is a complex multistep process. A central question in drug discovery is the potency and 

efficacy of the compound being tested. For cancer, which is at its core a proliferative disorder, inhibiting cell 

proliferation is an effective therapeutic strategy. Recent studies of plant derived compounds have shown that they 

are selective inhibitors of key components of cell cycle network (cyclin-dependent kinases and Cdc25). Our goal is 

to use dynamical modelling to determine which compounds are the best candidates for future chemical 

modifications to make them into potential drugs. We use the ordinary differential equation (ODE) models in 

MATLAB to determine the ranking of hypothetical compounds as potential drugs by testing the effect of different 

concentrations on inhibition of the eukaryotic cell cycle (minimal CDK network 2015), assuming that greater 

inhibition of the cell cycle at lower concentration of the drug will mean a better drug. Our results rank the 

hypothetical drugs in order of their efficacy, based on ATP competitive inhibition, and give hints about 

effectiveness of big sets of compounds with potential anti-cancer activity. Hence, we present a preliminary In Silico 

drug-discovery method which strengthens the mathematical modelling as a cost-effective first step and powerful 

approach for investigating complex cell signalling networks. 
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I.  INTRODUCTION 

Cell cycle has been an actively-studied cellular process in molecular biology since more than 30 years, especially due to 

its implications on cancer progression which is seen as a proliferative cell disorder. The purpose of cell cycle is to ensure 

life of all biological organisms in earth, by means of conservation of integrity, reparation and evolution of DNA through 

each cycle from mother to daughter cells, so that it is considered as a crucial biological process. The cell cycle starts when 

a quiescent cell, also known as G0 cells, receives a mitogenic stimulus that activates the cell division machineries. The 

stimulated cell reaches the G1 stage, characterized by containing the most critical restriction point based on the regulated 

noteworthy proteins known as cyclins. These proteins subsequently activate in a specific-manner cyclin-dependent 

kinases (CDKs) by dimerization, which play an essential role during cell cycle progression. After overcome this 

checkpoint, S phase takes place in order to replicate DNA, which allows the cell to duplicate its chromosomic material 

and grow in size. Finally, the cell enters in the preparatory stage for M phase (mitosis), or G2 phase, in which cytoplasm 

division begins and a markedly structure modification takes place [1].  
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As all important biochemical processes, cell cycle is controlled by many entities (kinases, phosphatases, protein 

complexes, etc.) organized within network motifs, which allow to determine checkpoints and hubs throughout cell 

division [2]. The major checkpoints are between G1 and S-phase and G2 and M-phase, highlighting the fact that CDKs 

are very important regulatory points, with high redundancy in their functions [3] necessary to guarantee the progression of 

cell division. Furthermore, other proteins such as Wee1, Cdc25, Rum1 among others, have several implications across M-

phase progression either by promoting or inhibiting CDK/cyclin complexes formation. In recent years, scientists have 

postulated some of the proteins described before as therapeutic targets to control and arrest cell cycle during cancer 

[4],[5]. The most studied molecules that have become a validated therapeutic target are CDKs, several of these kinase 

inhibitors are under Phase III of clinical evaluations. Also, Cdc25 inhibitors have shown good results to arrest the cell 

cycle [6]. Some of these drugs are natural products extracted from plants (e.g. staurosporine, falvopiridol, SV37, etc.) 

while others are purely synthetic (e.g. dinaciclib, LEE-011, etc.). A high proportion of CDK inhibitors are ATP-

competitive inhibitors, where the drug binds to the active site on the CDK, albeit development of ATP non-competitive 

and allosteric inhibitors has been a recent tactic [6],[7],[8]. As Krystof & Uldrijan [9] stated “poor therapeutic outcomes 

and serious side effects, together with acquired resistance to multiple drugs, are common problems of current cancer 

therapies. Therefore, there is an urgent need for new cancer-targeted drugs…” However, drug-discovery methods are 

quite expensive and time demanding, with no mention of high lab requirements. In this way, dynamical modeling emerges 

as an effective alternative to solve some points of this issue because it provides with systematic properties, reproducibility 

and future refining of the model according to molecular advances. Furthermore, dynamical models allow saving time and 

predicting system behavior after determined perturbations. Therefore, this strategy complements the pipeline for drug-

discovery methods as a previous analysis to guide future experimental designs. Hence, we aim to develop a preliminary In 

Silico drug-discovery method for cancer therapeutics based on a minimal CDK network of eukaryotic cell cycle from 

Gérard et al. 2015 [10], where cells progress through S and M in perfectly wild type fashion by using a fusion protein 

cdc13-L-cdc2 with both SPF (S-phase promoting factor) and MPF (M-phase promoting factor) activities and other 

molecular inferences (See [10] for details). 

II.  COMPUTATIONAL APPROACH 

The mathematical model is based on the minimal CDK network for cell cycle control in eukaryotes described by Gérard 

et al. (2015) [10]. In the paper they used both stochastic and deterministic methods to model the cell cycle, we focus on 

the deterministic model though. Although this model does not represent fully a real mammalian cell cycle, it is a good 

framework to construct a simple model.  Please focus on Fig. 1 (adapted from Gerard et al. [10]) where a Cdk (cyclin-

dependent kinase) which is called Cdc2 and a phosphatase called Cdc25 controls the yeast cell cycle. We assume that the 

extent of avoiding mitosis is directly proportional to extent of inhibition of proliferation of cancer cells. Thus, Cdc2 and 

Cdc25 were selected as therapeutic targets in our model. In brief, we used the Ordinary Differential Equations (See 

supplemental material ODEs of the model) from Gérard’s cell cycle to establish a set of inhibitory approaches on either 

Cdc2 or Cdc25 for five hypothetical plant-derived compounds, PDC (See Appendix 1), in MATLAB R2015b version 8.6. 

Finally, concentration effect of different PDCs on cell cycle arrest was analyzed, in order to rank compounds and establish 

the In Silico drug discovery (See supplemental code in MATLAB for PDC1 and PDC5). 
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Figure 1. MCN and Dynamical behavior of cell cycle model by Gérard et al. [4]. Up. Adapted reaction scheme for the 

minimal Cdk network driving the cell cycle in fission yeast. Solid lines represent biochemical reactions, while dashed 

lines define catalytic effects. Only one Cdk:cyclin complex (the fusion protein Cdc13-L-Cdc2, referred to as MPF) 

controls the successive progression through DNA replication and mitosis. Inhibition PDCs is included on their respective 

targets. Down. MCN strain (cdc13-L-cdc2 Δcdc13 Δcdc2 ΔCCP). Time evolution of total fusion protein (light green, 

FPT), active MPF (dark green), active Wee1 (red), total Rum1 (blue), active APC:Slp1 (grey) and cell mass (black). Total 

Rum1 is defined by Rum1T = Rum1 + Rum1P + MPF:Rum1. Descriptions and adapted figures taken from: Gérard C, 

Tyson JJ, Coudreuse D, Novák B. Cell Cycle Control by a Minimal Cdk Network. PLoS Computational Biology. 2015. 11 

(2): e1004056.  

III.  RESULTS 

In the minimal strain model proposed by Gérard et al. [10], the MPF activity relies on complex Cdc2-L-Cdc13 (where 

Cdc2 is a CDK, L is a linker or fusion protein, and Cdc13 is a cyclin), especially on fusion protein because there are not 

Cdc2 and Cdc13 monomers. The minimal cell network (MCN) and dynamical behavior for this cell cycle model is 

represented in Fig. 1. According to above, cell cycle inhibition by PDC01, PDC02 and PDC03 will be described in terms 

of MPF inhibition instead of net Cdc2 inhibition.  

In general terms, the PDCs effects on their respective targets are the increase in cell size, longer G1-phase time and block 

on S/G2. Particularly, the introduction of MPF inhibitors (PDC01, PDC02 and PDC03) leads to a notorious increase in 

cell mass (Fig. 2).  

 

 

Fig. 2. MPF inhibition on cell cycle dynamics. Dynamics of different cell cycle components after MPF inhibition by 

PDC01 (Upper Left), PDC02 (Upper Right) and PDC03 (Down) addition. Concentrations of PDCs are listed on Table 1. 

Note that three plant derived compounds inhibit effectively MPF (active state) and increase cell mass with regard to 
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normal cell cycle (Figure 1), which can produce mitotic catastrophe and cell death. Moreover, there is a small increase in 

G1-phase time is depicted. 

On the other hand, Cdc25 inhibitors (PDC04 and PDC05) not only augment the cell size after cell division but also 

produce an S/G2 block and a subsequently longer G1/S time (Fig. 3), which delay cell cycle. 

 

Fig. 3. Cdc25 inhibition on cell cycle dynamics. Dynamics of different cell cycle components after addition of Cdc25 

inhibitors, PDC04 (Up) and PDC05 (Down). Concentrations of PDCs are listed on Table 1. Note the prolonged time 

between cycles (>200 min) due to an increase in G1/S time and the S/G2 block, this could be produced by a longer and 

sustained concentration of Wee1 especially with PDC05. There is a tendency for mitotic catastrophe of cells treated with 

both PDC04 and PDC05, although cells do not reach threshold for this process (mass ≈ 2). 

To compare the concentration effect of PDCs we show in TABLE 1 the drug ranking for cell cycle inhibition after 

modification of MATLAB code for MPF and Cdc25 inhibition with their respective PDC inhibitors separately. 

TABLE 1. RANKING OF PDC DRUGS IN ORDER OF THEIR EFFICACY ON CELL CYCLE ARREST 

Drug Concentration (mM) Mass of Cell Inhibition Target 

PDC05 6 x 10
-4

 1.79633 Cdc25 

PDC02 2.45 x 10
-3

 1.99138 MPF 

PDC04 9 x 10
-4

 1.83041 Cdc25 

PDC03 4.97 x 10
-3

 2.01400 MPF 

PDC01 5.3 x 10
-3

 1.97859 MPF 

IV.   DISCUSSION 

MPF inhibition by PDC01, PDC02 and PDC03 showed a clear increase in cell mass, possibly due to a prolonged time in 

G1 stage. This increment in cell size has been reported to produce a conditional mitotic catastrophe, where cells do not 

complete correctly DNA replication and go directly to mitosis and thereby these cells death [11]. In fact, Gérard et al. [10] 

established a mitotic catastrophe threshold of mass ≈ 2. As we can see in Table 1, all MPF inhibitors reached easily this 

cell mass threshold indicating that concentrations in order of 10
-3

 mM were enough to induce an anti-proliferative effect 

and made possible the ranking. The tendency towards G1-phase (right in Fig. 1) because of the notorious increase in 

MPF-PDC and lack of active MPF could explain this phenomenon. Some research before have denoted this noteworthy 

effect of CDK inhibitors on cell cycle progression [9],[12]. 

On the other hand, Cdc25 inhibition with PDC04 and PDC05 had a highlighted effect on cell cycle delay. There was a 

distinguishable prolongation in time between cycles (>200 min), especially for PDC05 treatment, which could be 

associated with an increase in G1/S time and an S/G2 block. Furthermore, sustained concentrations of Wee1 (Fig. 3, 

down) could be related with the block on S/G2 due to its regulatory role on MPF activity, shifting the process to S phase 

(left in Fig. 1). According to this, we could infer tardiness in cell cycle progression which would produce disruption in 

intracellular processes and finally manifestation of cell death. Even though cells did not reach mitotic catastrophe 
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threshold (mass ≈ 2), there was a significant increase in cell mass which could induced cell death. In fact, over-expression 

of Cdc25 activity has been frequently observed in different types of cancer (thyroid, laryngeal, esophageal, gastric, 

hepatocellular, ovarian, endometrial, prostate, and colorectal as well as in non-Hodgkin lymphomas [13]. Over-expression 

is most often accompanied by over-activation of Cdc2 and correlates with aggressiveness, bad prognosis and high-grade 

tumors. In this sense, targeting inhibition activity of Cdc25 by PDCs appears a better therapeutic approach than MPF 

(Cdc2) inhibitors, taking into account the larger disruption of Wee1 control in comparison to effects on MPF inhibition in 

our model. This correlates with the fact that Cdc25 has become a promising target for the development of anticancer drugs 

recently [6], although more research and experimental confirmation is needed. 

Finally, the results presented in TABLE 1 are the minimum concentrations of each PDC that leads to cell cycle arrest. A 

better comparison between PDCs can be done if we establish a threshold level for cell death (mass ≈ 2, for mitotic 

catastrophe [10]), perhaps using step function (heaviside) in MATLAB and assigning 0 for cell survival and 1 for cell 

death within the code.  

V.   CONCLUSION 

Our results suggest that this In Silico strategy for drug comparison and discovery is optimal in terms of time and 

experimental predictions, but experimental validation is required. Some drawbacks of this strategy encompass the lack of 

kinetic data, biochemical signaling gaps and genetic/metabolic origins between patients. This approach can be added to 

the high amount of mathematical modeling that have been developed to analyze cell cycle dynamics, which allow 

researchers to initiate in new investigation lines for cancer treatment [2],[14]. As an experimental component of a systems 

biology pipeline, it seems that In Silico drug-discovery would play an impressive role on cancer treatment and other 

diseases [15]. Particularly in cancer, an In Silico method can provide with prominent previous advances that will help to 

accomplish research objectives and gain prior knowledge to understand the complex metabolic networks that involves this 

disease. Hence, this kind of computational strategy will lead to progression in future medicine, supporting the new 

paradigm of P4 medicine (preventive, personalized, participatory and predictive). 

Appendix 1. Hypothetical Experimental Data on Lead Compounds PDC01 to PDC05. 

1. All 5 compounds are moderately soluble in water or plasma. The maximum concentration that can be achieved is 0.1 

mM. 

2. From binding experiments the Kis for the five different compounds are: 

Drug Ki (nM) Enzyme 

PDC01 110.00 

Cdc2 PDC02 240.50 

PDC03 120.76 

PDC04 200.12 
Cdc25 

PDC05 105.76 

Appendix 2. MATLAB Code for Cdc25 Inhibition with PDC05. 

% This code is based on the model presented in: Gérard, Claude, et al. "Cell Cycle Control by a Minimal Cdk Network." 

PLoS Comput Biol 11.2 (2015): e1004056.  

function cellcycle  

clear;  

clc;  

close all;  

n=1;  

nbvar=11; %Number of variables and initial conditions:  

%Initial conditions  

MPF0=0;  

MPFp0=0;  

Slp1A0=0;  

IEA0=0;  
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MPFrum10=0.01;  

Rum10=0.001;  

Rum1p0=0.01;  

Wee10=0.01;  

Cdc25p0=0.01;  

M0=0.3;  

Cdc25PDC0=0;  

xini=[MPF0 MPFp0 Slp1A0 IEA0 MPFrum10 Rum10 Rum1p0 Wee10 Cdc25p0 M0 Cdc25PDC0];  

fprintf('varia=30_MCN_allparam_X=0.1_10cells')  

for n=1:3  

% Time parameters:  

trans=400;  

tend=300;  

ndiv=10;  

tstep=0.1;  

integration(xini,trans,tend,tstep,ndiv);  

n=n+1  

end  

% Integration  

function output=integration(x0,trans,tend,tstep,ndiv);  

 

division=[];  

options = odeset('Events',@events,'OutputSel',1);  

tspan = [0:tstep:tend];  

R=[0 x0];  

treset=[];  

for i=1:ndiv  

fprintf('.')  

[t x] = ode23s(@dxdt,tspan,x0,options);  

x0=x(end,:);  

x0(10)=x0(10)/2; % reset of the mass  

tt=t+R(end,1);  

R=[R;tt x];  

if tt(end)>trans  

treset=[treset; tt(end)];  

end  

end  

fprintf('\n\n')  

%%% Plots  

t=R(:,1);  

k=find(t>trans);  

k=k(1);  

t=R(:,1)-trans;  

tend=t(end);  

mass=R(:,11);  

MPF=R(:,2); %%  

MPFp=R(:,3); %%  

Wee1=R(:,9); %%  

Rum1T=R(:,6)+R(:,7)+R(:,8); %%  

Slp1a=R(:,4); %%  

figure (1)  

plot(t,mass,'k','LineWidth',3);  

hold on;  

plot(t,MPF,'Color',[0 0.5 0],'LineWidth',3); %%  

plot(t,Wee1,'r','LineWidth',3); %%  

plot(t,MPF+MPFp,'g','LineWidth',3); %%  
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plot(t,Rum1T,'b','LineWidth',3); %%  

plot(t,Slp1a,'Color',[0.5 0.5 0.5],'LineWidth',3); %%  

xlabel('Time','fontsize',18);  

ylabel('MPF, Wee1, Rum1T, Cell Mass and Total Fusion Protein','fontsize',14);  

xlim([20 400]);  

ylim([-0.1 2.5]);  

legend('Mass','MPF','Wee1','FPT','Rum1T','Sl1pa'); %%  

set(findobj(gca,'Type','line'),'LineWidth',2);  

%%% Statistics  

tdiv=treset(end)-treset(end-1);  

mdiv=max(mass(k:end));  

division=[division ; tdiv mdiv]  

fprintf('t_div=%g \n',tdiv)  

fprintf('m_div=%g \n',mdiv)  

function y = dxdt(t,v)  

%Parameters  

kSMPF=0.05;  

kD1CYC=0.0235;  

kD2CYC=0.75;  

kASS=100;  

kDISS=0.0025;  

kDRUM1=0.125;  

kIRUM1=2;  

k1SLP1=0.8;  

J1SLP1=0.001;  

V2SLP1=0.2;  

J2SLP1=0.001;  

kDMPFRUM1=0.35;  

k1IE=0.2;  

a=0.05;  

J1IE=0.001;  

V2IE=0.05;  

J2IE=0.001;  

k12RUM1=50;  

kARUM1=35;  

VWEE1=0.125;  

J1WEE1=0.01;  

J2WEE1=0.01;  

k1CDC25=0.05;  

k2CDC25=2.5;  

J1CDC25=0.01;  

J2CDC25=0.01;  

VCDC25=0.2;  

k1WEE1=0.05;  

k2WEE1=2.5;  

m=0.005;  

Cdc25T=1;  

Wee1T=1;  

IET=1;  

Slp1T=1;  

VSRUM1=0.06;  

kDRUM1P=250;  

kDX=1;  

CCP=0; %%  

Ki=105.76;  

PDC=0.0006;  
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%Variables  

MPF=v(1);  

MPFp=v(2);  

Slp1A=v(3);  

IEA=v(4);  

MPFRum1=v(5);  

Rum1=v(6);  

Rum1p=v(7);  

Wee1=v(8);  

Cdc25p=v(9);  

Mass=v(10);  

Cdc25PDC=v(11);  

%Algebric Equations  

kWEE1=k1WEE1*Wee1T+(k2WEE1-k1WEE1)*Wee1;  

kWEE1p=0.625; %%  

kCDC25=k1CDC25*Cdc25T+(k2CDC25-k1CDC25)*Cdc25p;  

kCDC25p=1; %%  

Wee1p=Wee1T-Wee1;  

Cdc25=Cdc25T-Cdc25p-Cdc25PDC;  

IE=IET-IEA;  

Slp1=Slp1T-Slp1A;  

% ODEs  

y = [  

%MPF  

kSMPF*Mass-(kWEE1*MPF)+(kCDC25*MPFp)-(kD1CYC+kD2CYC*Slp1A)*MPF-

kASS*Rum1*MPF+(kDISS+kDRUM1+kIRUM1)*MPFRum1;  

%MPFp  

kWEE1*MPF-kCDC25*MPFp-(kD1CYC+kD2CYC*Slp1A)*MPFp;  

%Slp1A  

k1SLP1*IEA*Slp1/(J1SLP1+Slp1)-V2SLP1*Slp1A/(J2SLP1+Slp1A);  

%IEA  

k1IE*(MPF)*IE/(J1IE+IE)-V2IE*IEA/(J2IE+IEA);  

%MPFRum1  

kASS*Rum1*MPF-(kDISS+kDRUM1+kIRUM1+kDMPFRUM1)*MPFRum1;  

%Rum1  

VSRUM1-kASS*Rum1*MPF+(kDISS+kDMPFRUM1)*MPFRum1-k12RUM1*MPFp*Rum1+kARUM1*Rum1p-

kDRUM1*Rum1;  

%Rum1p  

kIRUM1*MPFRum1+k12RUM1*MPFp*Rum1-kARUM1*Rum1p-kDRUM1P*(MPF)*Rum1p-kDRUM1*Rum1p;  

%Wee1  

VWEE1*Wee1p/(J1WEE1+Wee1p)-kWEE1p*(MPF+a*MPFp)*Wee1/(J2WEE1+Wee1); %%  

%Cdc25p  

kCDC25p*(MPF+a*MPFp)*Cdc25/(J1CDC25+Cdc25)-VCDC25*Cdc25p/(J2CDC25+Cdc25p); %%  

%Mass  

m*Mass;  

%Cdc25PDC  

Ki*PDC*Cdc25p;  

];  

% Event  

function [value,isterminal,direction] = events(t,x)  

% Locate the time when (testvar-threshold) passes through zero in a decreasing direction and stop integration.  

testvar=x(1); % cdk  

threshold=0.2; % threshold on cdk  

value = testvar-threshold; % detect height = 0  

isterminal = 1; % stop the integration  

direction = -1; % negative direction      
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